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ABSTRACT

: Most of the Non-Linear evolution equations give soliton solutions. The simplified version of

Hirota's method, proved to be an effective and straightforward technique for finding soliton and multi soliton
solutions for various non-linear evolution equations. In this paper, soliton and multisoliton solutions of
Kadommstev Petviashvilli (KP) equation are obtained by using a symbolic manipulation package mathematica
introduced by Hereman et. al. Symbolic manipulation package allows one to construct exact soliton solutions of
non linear evolution and wave equations, provided the equations can be brought in bilinear form using Simplified
version of Hirota method.We have illustrated the method in detail and shown graphical soliton solutions by 3D
plotting using symbolic computer language maple. Graphs at different intervals of time clearly represent waves
collision, dispersion and again retaining their original speed and shape after a collision. Mathematical results of
solitons show that soliton solutions are just polynomials of exponentials.
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I. INTRODUCTION

Nonlinear evolution wave equations (NEEs) are partial
differential equations (PDES) involving first or second order
derivatives with respect to time. Such equations have been
intensively studied for the past few decades[1-3] and several
new methods to solve nonlinear PDES either numerically or
analytically are now available. Hirota's bilinear method is a
powerful tool for obtaining awide class of exact solutions of
soliton equations. In this paper, we have used symbolic
mani pul ation packages mathematica to find soliton and multi
soliton solutionsof KPequation[4]. Theprogramfilehirotam
in the software package is used to test for the existence of
solitary wave and soliton solutions of non-linear partial
differentia equationsof bilinear form. Italsoexplicitely construct
one, two and three- soliton solutions of well known partial
differential equationsviaHirotasmethod[5-8]. Hirotasmethod
allows one to construct exact soliton solutions of nonlinear
evol ution egquati on and wave equations, provided theequations
canbebroughtinbilinear form.

Il. SSIMPLIFIED VERSION OF HIROTA
METHOD

A. Bi-Linearization
The KP equation is given by:
(u—6uu, + Uy, +ou, =0 (1)

First wetransform thiseguation into bi-linear formusing
dependent variable transformation.

Thebi-linearizing transformation for KPis

0
u(t, x, y) —Z&Iogf

The bilinearizing transformation for integrable non-linear
evolution can be obtained from Painleve Analysis[9].
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Substituting the valuesin KP equation (1), we get
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Integrating both sides and set constant of integration
to be zero and on rearranging, we get




52 Bansal and Kuldeepak
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Thisisthebilinearized form of KP equation.

B. Transformation to Hirota Bi-linear form

By using Hirota D-operator we can write Bi-Linear form
of KPto HirotaBi-Linear form.

Let usconsider DD, applied on the product f. f,
d d)\(d 0 Co
DD, f.f =(———.j(—_—.j f(xyt).f(x,y,t
(DA T-F) ot ot axax{(xy)(xy)}
‘x':x,y':y,t':t

= fuof + o= fofom fofy = 2( £ f = 8,

Now consider D2, we get

s 9 o) C
D, {f.f}:(&—gj {f(x,y,t).f(x,y,t)}
‘x':x,y':y,t':t
= o f = Ao f 46T o —af, o+ .
= 2 f f — 4T T +31,,7)
Also,
( \? Co
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Note that if we multiply the equation (2) by 2 and
Substitute these values, we get the Hirota bilinear form

(DyD +D,* +a D?) f.f =0 (3
Thisisthe Hirotabilinear form of KP equation.

C. The Hirota Perturbation and Soliton Solutions
Substituting f=1+¢f, +€2f,+.......... in(3), weget

F(D:,Dy,Dy) {13 +& F(D;,D,,Dy) { f1+1.1,}
+€%F(Dy, Dy, Dy ) {1+ fufy+1f}+ .. =0,
Where we have set

F(D;, DDy ) =(D,D + D +a D2 f.1 (&)

and f, = M with 1, = kyx+ly+wt+n?

Makethe coefficientsof €™, m=0, 1, 2, ....... tovanish.
The coefficient of €2 is F(D,, D,, D){1,1} =0,
SinceF(0,0,0) {1} =0.

By the coefficient of ¢!, we have

F(D;, Dy, Dy ){ f1+15,} =0
= F(D,D,,D,){ i1} +F(D;,D,, Dy J{L.1;} =0
= F(0.050y) i+ F(9,.9,9y) f,=0
= 2F (9,,05,0,) =0

= F(0,,0,.9,)=0 (5

(1) One Soliton Solution : Now to construct one-soliton
solution of KPwetake,

f=1+ef;
where f, = e andm, = kx+ly+wt+n?d.
Notethat f;=0for all f; > 2.
Now

F(Dy, Dy, Dy ){ f1+1.1,} = (D,D; + Dy + aDZ){ f,.1+ 1.1}

= (DD + Dy +a D7){ f,.1} + (DD, + Dy + o D2){1.1,}
Thus,
(82 4 82\
F(D,,D,, D, J{ f;. 1416} =2 | —+—+a — | f
( t =~ xo y){ 1 + 1} kaxat+ax4+a asz 1
=2(k1\/vl+k14+oc If) e .(6)

From this equation we get the dispersion relation as
follows

F(D;, Dy, Dy ){ f1+1.5,} =0

. 2(k1wl+ k! + o If)eTll =0
= kw + ki +o 12 =0
ki +o If
1

Thisisdispersion relation.
Now from the coefficient of €2, we get

F(Dy.D,.Dy) {fod fify+16} =0
— F(D,,D,.Dy) {f,.1+1f,} ==F(D;,D,, D, ){ f,.f,}
— 2F (9,,9,,9y ) f, = —F (D;, D, D, ) {e™.€" |

= 2F (9,05, ) f, =0 = F(9,,95,0, ) f, =0
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Thereforewemay setf, =0

Similarly, we can provethat f,=f,=...= 0. Thusfor one
Soliton solutionf; =Ofor all j > 2.

Finally without any loss of generality, wemay sete =1,
so f=1+ ¢, therefore one-soliton solution of KP equationis
given by

k?

u(txy)=-——
(1+ e"l)

where 1, = kx+ly+wt+n?

Graphsfor thisequation represent one soliton travelling
with constant speed retaining the same shape after collision
and is plotted with the help of symbolic software maple.

i = BEEER
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Fig. 1. One soliton solution for KP equation at
different time intervals.

Vauesof the parametersistakenaskl=1,11=2,h?=0

(2) Two Soliton Solution: In order to construct two
Soliton solution, we take

fi=eM +e", wheren, = kx+ Ly +wt+n°,i=12
Now we have the coefficient of ¢! as

F(D;, Dy, Dy ){ f1+1.1} =0

= ( 0° " o 82\ f,=0
(ot o T%9y2) 1T
(92 o4 92 )

2 | —+—+o—|[{et+e2 =0
Laxat ox* oy? { }
(92 0% 9%)
+a—;|1emt=0
oxt ay? J { }

2 4 2
(a_+a_+ a_\{en2}=o
Laxat oxtoy?
Soving these equations, we get

o

an

kl\Nl .|.ki4+(x |i2 =0 fori=1,2.
K tol?

ki
This gives the dispersion Relation.
The coefficient of €2is

= W = =12

F(D,.D,.Dy) {fpd+ fify+18} =0

—  F(D.D,.Dy) {f,.1+11,} =-F(D;,D,, Dy ){ f,.f,}

= 2F (9,050, ) f, =—F (D, D,, D,) { (€ + €M)} (€. &7}

=-2F(D, D,, D) {em. e}
=—F(D, D,, D,) {e". e+ ez e}

F(D;, DDy ){em et} =0
and F(D,,D,,D,){e"€"}=0

O F(0,,959y) f,=—F(D,,D,,Dy) {e™.e"}
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= -[ DD +Df +a.D} ] {em e}

(klwl — ok — Wk, + k2W2)
- +(k14 — 2k3K, + B6k2kZ — 4k k3 + k;‘) {emern]

raIZ =20, +13)

(ke —ko ) (g —we)

[+l k)
oIy 1)
=-F(p- pz){e*‘l.e*‘?} A7)

wherewe haveset F(p,)=kw +k*+a 17,
Therefore,

F(at,ax,ay) f,=—F(p - pz){e’h.e*‘z}
Ifwetake f, = A, e "2, weget
F(at,ax,ay)Au eme® =—F(p, - pz){e‘h.e"z}

= A, (ai—;+;—;+oc§j {e”l.e"l} =-F(p,- pz){enl.e”Z}

(kW + Woky +Wiky + koW )
= A, +(k14+4k13k2+6k12k22+4k1k§+k§) {e“l.e"z}
rou(IZ + 21, +13)
= -F(p - pz){e*‘l.e*‘?}

(kg + Ky ) (W +ws)
= A, +(k1+k2)4

+oc(|1+I2)2

{e“l.e”Z} =-F(p - pz){enl.e'h}

= A, F(p+ pz){e"l.e*‘?} =—F(p- pz){e*‘l.e*‘z}

_F(pi—p) .
F(p+py) -8

Thus, f =1+¢ f,+¢® f, become

= A, =

f=1+et+e% + A" n =kw +k*+o 12+’ i=12
here without any loss of generality, we havetaken e = 1.

82
Now since U(X, y,t) = 2¥|09 f, Therefore substitut-
ing the values of f in above equation, then

The two Soliton solution with the aid of symbolic
computation is

u(x,y.t)=
2{ kZe™ + ke + [(k1 —k,)? + Aiz((k1 +ho)? + ke + kzzem)}em*m}

2
. N1+,
(] eTh ez Ael 2)

Here n, = kw +k*+a 12 +n and A, isgiven by (8)

Graphsfor this equation represent two solitonstravelling
with constant speed retaining the same shape and is plotted
with the help of symbolic software maple.
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3 - From the coefficient of €2, we have

F(D,.D,.Dy) {fpd fify+16} =0
F(D:,Dy,Dy) {fo1+11,} = F(D;, Dy, Dy ){ 1.1y}

2F(0,,0,0.9y) T,

=-F (Dt,DX, Dy){(e“1 +e' +e"3).(eTll +e' +e"3)}

' e =—F(D,,D,.D, ){2(e™ &" + e e® +em e |
Fig 2. Two solitons of KP equation at different time intervals.
Values of the parameters used isk1 =1, k2 =3/2,11 = 2, F (8t ,8X,8y)
12=5/2,n2=0,n2=0
(3) Three Soliton Solution: Now in asimilar way we - —F (Dt D, Dy){(enl.enz e gl 4 gl _ens)}
construct the three soliton solution of KP equation.
Wetake f =1+¢ef +e% f,+e3f, =—F(p - pz){e"l.e"z}—F(pz— %){e*‘z.e*b}
where f, = el + e + "3 with n =kw + ki4+oc |i2 +n? -F ( P, — %){eﬂl_eﬂs} (9)
Notethat f; =0forj=0, We see that f, should be of the form
Here let us consider only the coefficients of f, = ALe™.E™ + Ay g 4 AeM

e™ m=1,2,3 4, sinceother coefficients vanish automatically.

o We substitute this equation into (9) and use
From the coefficient of £, we have

w+kf+al?=0, =123
F(D;,D,.D, ){ fi1+1f,} =0 kow +k* +oc 1,
Weget A; wherei,j=1,2,3i<jas
(92 o 92)

2| —+——+0—|f,=0
= oxot  ox* aasz ! A __F(pi_pj)
=t
(2 o 3 F(p+p)
= 2k—+—4+oc—2J{e“1+e“2+e“3}=O
oxat  9x ay kw; + kW + 4kk; — 6kk? + 4k kS + 61,1
(92 3% 32) kW kg + k3K + 6Kk + ik + 6
- 4+~ - M | —
= axat+ax4+aay2 {el}_o Now for the coefficient of €3, we have
(2 g 2 F(Dy. Dy Dy) {fod foufy+ fy.6, +1.65} =0
(30 3 o 1e =0
ot ox®  dy =  F(D.D,,Dy) {f31+1f;)
(92 9% 9%
Nt gt a0 ~-F(DuD,D) {fufy+ Toh]
Soving these equations, we get = F(8t,8x,8y) fa :—F(Dt,DX,Dy)
kw +k'+alf=0 =123 {('Alzem_eﬂz T Ae™ e + Alsem_e“s)(eﬂl +eh +e“3)}
k*+a 12 : :
- W=——"—""1i=123 On simplecalculations, we get

This gives the dispersion Relation. F(at’ax’ay) f3



56
—Pu)+ AP (P — P2~ Ps)

+ AgF ( P, @ tn2+ng )

- {(ALZF ( Ps—
~n-n)
Hencef,isof theform f, = Bght*Mz*"s

If we substitute f, in the above equation, we find that

_ASF(Ps= Py = P+ AF (B— Py — Po)+ AsF (P, — P = )
F(pi+ P+ Py
Now substituing thevaluesof f,,f,andf;inf=1+¢f;
+e2f,+e3f,, wehave f =1+eM + "% +e™ + A,

+ Ap€2E 4+ A gt 4 B T2 T
=kw +k*+12+n°1=123
Herewithout any loss of generality, wehavetakene = 1.
. 92
Now since u(x, y,t) = ZFIOQ f
X

Therefore on substituting the values of f in above
equation and with the help of symbolic computation, we get

R(x, y,t)

the three Soliton solution of KP as u(x,y,t)=2 ,
S(x,y,t)

where

R(x y.t) = ket + kZe™ + ke
PN [Atzpis(kz -
+eﬂ1+“z+2“3[/313A23(k1— K,)? + B(ky + k, ) 2}
+ e 2 A A (I — ko) + Bl + o)
Lt [(k1 —kp)” + A Kfe™ e + (g + k )2”
et [(kl—ks)z N Als(k1e“3 +I2eM + (i, + K, 2”
et [(k2 k)Pt A23(k2e”3 +12e" + (ky + Ky 2”

| Ao K2+ KE + I + 2k, — 2k — 2Uoks) |

+ A (K + KE + K2 + 2kgkg — 2Kk, — 2koks)

+ g2+ K + K + kol — 2k, — 2k
B + G + K + 2Ugk, + 2Agks + 2ok

k32+B 2}

+ ettt

+ Beltn2tns |:p12k328ﬂ1+712 + Al3k22 +ehtns 4 A23k126712+713:|

and S(x,y.t) =[1+eM +e" + e + Az + Azt

+ ALt 4 BeM 2 12for M = kew + k4o 12410, 1=1,2,3.

Graphs for this equation represent three solitons
travelling with constant speed retaining the same shapeand is
plotted with the help of symbolic software maple.
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Fig 3. Three solition waves of KP equation at different time intervals
Values of the various parameters used are:

kl=1,k2=3/2,k3=5/4,11=2,12=5/2,13=7/4, T]10=O,
n,L=0,n"=0.
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(4) N-Saliton Solution: We have three soliton solution
given as

f=1+eM+e+eh+ Attt
+ + +Mo+
+ Azsenz M 4 Alsenl M3 4 A12A23Alsen1 N2+N3

ni= kw+k*+al?+ni=123

where
COF(popy)  kw o kgw o+ Ak3Kk — 6k + akk? + 61
A __F(pl +p)) kW, + kgw o+ 4k3K; -+ BKZKC + 4k + 6
andi,j=1,2,3.

By writing A; = exp A, wemay expressf as

(3 3 )
f= > expLZ“jﬂj“’Z“j“kAij

u=0,1 j=1 >k
Where Y. u=01 Indicatesthe summation over all possible com-

binationsof 11, =0,1, 11, =0, 1, ...ty =0, 1and Y. , means
the summation over all possible combinations of 3 elements
under the condition j > k. For example, the choice u, = 1,
u,=0,u;=0givesexpmn, .

By employing the above notation, the N-soliton solution

(N N )
is expressed as f= > expLZp.jnj +ZMijAij , Where

n=01 j=1 j>k
zu=o,1 indicates the summation over all possible com-
. . N
binationsof u; =0,1,1,=0,1, ...y =0,1and >, , means

the summation over all possible combinations of N elements
under the condition j > k.
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